Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 26
1.
Chemosphere ; 355: 141851, 2024 May.
Article En | MEDLINE | ID: mdl-38579950

Fish have common neurotransmitter pathways with humans, exhibiting a significant degree of conservation and homology. Thus, exposure to fluoxetine makes fish potentially susceptible to biochemical and physiological changes, similarly to what is observed in humans. Over the years, several studies demonstrated the potential effects of fluoxetine on different fish species and at different levels of biological organization. However, the effects of parental exposure to unexposed offspring remain largely unknown. The consequences of 15-day parental exposure to relevant concentrations of fluoxetine (100 and 1000 ng/L) were assessed on offspring using zebrafish as a model organism. Parental exposure resulted in offspring early hatching, non-inflation of the swimming bladder, increased malformation frequency, decreased heart rate and blood flow, and reduced growth. Additionally, a significant behavioral impairment was also found (reduced startle response, basal locomotor activity, and altered non-associative learning during early stages and a negative geotaxis and scototaxis, reduced thigmotaxis, and anti-social behavior at later life stages). These behavior alterations are consistent with decreased anxiety, a significant increase in the expression of the monoaminergic genes slc6a4a (sert), slc6a3 (dat), slc18a2 (vmat2), mao, tph1a, and th2, and altered levels of monoaminergic neurotransmitters. Alterations in behavior, expression of monoaminergic genes, and neurotransmitter levels persisted until offspring adulthood. Given the high conservation of neuronal pathways between fish and humans, data show the possibility of potential transgenerational and multigenerational effects of pharmaceuticals' exposure. These results reinforce the need for transgenerational and multigenerational studies in fish, under realistic scenarios, to provide realistic insights into the impact of these pharmaceuticals.


Perciformes , Water Pollutants, Chemical , Animals , Humans , Adult , Zebrafish/metabolism , Fluoxetine/pharmacology , Larva , Antidepressive Agents/pharmacology , Perciformes/metabolism , Neurotransmitter Agents/metabolism , Pharmaceutical Preparations/metabolism , Water Pollutants, Chemical/metabolism
2.
Environ Pollut ; 344: 123355, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38228265

Cocaine, methamphetamine, ectasy (3,4-methylenedioxy amphetamine (MDMA)) and ketamine are among the most consumed drugs worldwide causing cognitive, oxidative stress and cardiovascular problems in humans. Residue levels of these drugs and their transformation products may still enter the aquatic environment, where concentrations up to hundreds of ng/L have been measured. In the present work we tested the hypothesis that psychotropic effects and the mode of action of these drugs in D. magna cognitive, oxidative stress and cardiovascular responses are equivalent to those reported in humans and other vertebrate models. Accordingly we expose D. magna juveniles to pharmacological and environmental relevant concentrations. The study was complemented with the measurement of the main neurotransmitters involved in the known mechanisms of action of these drugs in mammals and physiological relevant amino acids. Behavioural cognitive patters clearly differentiate the 3 psychostimulant drugs (methamphetamine, cocaine, MDMA) from the dissociative one ketamine. Psychostimulant drugs at pharmacological doses (10-200 µM), increased basal locomotion activities and responses to light, and decreased habituation to it. Ketamine only increased habituation to light. The four drugs enhanced the production of reactive oxygen species in a concentration related manner, and at moderate concentrations (10-60 µM) increased heartbeats, diminishing them at high doses (200 µM). In chronic exposures to environmental low concentrations (10-1000 ng/L) the four drugs did not affect any of the behavioural responses measured but methamphetamine and cocaine inhibited reproduction at 10 ng/L. Observed effects on neurotransmitters and related metabolites were in concern with reported responses in mammalian and other vertebrate models: cocaine and MDMA enhanced dopamine and serotonin levels, respectively, methamphetamine and MDMA decreased dopamine and octopamine, and all but MDMA decreased 3 MT levels. Drug effects on the concentration of up to 10 amino acids evidence disruptive effects on neurotransmitter synthesis, the urea cycle, lipid metabolism and cardiac function.


Cocaine , Illicit Drugs , Ketamine , Methamphetamine , N-Methyl-3,4-methylenedioxyamphetamine , Humans , Animals , N-Methyl-3,4-methylenedioxyamphetamine/toxicity , Illicit Drugs/toxicity , Daphnia magna , Dopamine , Cardiotoxicity , Methamphetamine/toxicity , Amphetamine , Cocaine/toxicity , Neurotransmitter Agents , Amino Acids , Mammals
3.
Ecotoxicol Environ Saf ; 270: 115888, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38150752

Glyphosate, a globally prevalent herbicide known for its selective inhibition of the shikimate pathway in plants, is now implicated in physiological effects on humans and animals, probably due to its impacts in their gut microbiomes which possess the shikimate pathway. In this study, we investigate the effects of environmentally relevant concentrations of glyphosate on the gut microbiota, neurotransmitter levels, and anxiety in zebrafish. Our findings demonstrate that glyphosate exposure leads to dysbiosis in the zebrafish gut, alterations in central and peripheral serotonin levels, increased dopamine levels in the brain, and notable changes in anxiety and social behavior. While the dysbiosis can be attributed to glyphosate's antimicrobial properties, the observed effects on neurotransmitter levels leading to the reported induction of oxidative stress in the brain indicate a novel and significant mode of action for glyphosate, namely the impairment of the microbiome-gut-axis. While further investigations are necessary to determine the relevance of this mechanism in humans, our findings shed light on the potential explanation for the contradictory reports on the safety of glyphosate for consumers.


Glyphosate , Herbicides , Humans , Animals , Zebrafish/metabolism , Glycine/toxicity , Dysbiosis/chemically induced , Shikimic Acid/metabolism , Herbicides/toxicity , Neurotransmitter Agents
4.
Sci Total Environ ; 912: 169301, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38103609

The current view is that environmental levels of nicotine and cotinine, commonly in the ng/L range, are safe for aquatic organisms. In this study, 7 days post-fertilization zebrafish embryos have been exposed for 24 h to a range of environmental concentrations of nicotine (2.0 ng/L-2.5 µg/L) and cotinine (50 pg/L-10 µg/L), as well as to a binary mixture of these emerging pollutants. Nicotine exposure led to hyperactivity, decreased vibrational startle response and increased non-associative learning. However, the more consistent effect found for both nicotine and cotinine was a significant increase in light-off visual motor response (VMR). The effect of both pollutants on this behavior occurred through a similar mode of action, as the joint effects of the binary mixture of both chemicals were consistent with the concentration addition concept predictions. The results from docking studies suggest that the effect of nicotine and cotinine on light-off VMR could be mediated by zebrafish α7 nAChR expressed in retina. The results presented in this study emphasize the need to revisit the environmental risk assessment of chemicals including additional ecologically relevant sublethal endpoints.


Environmental Pollutants , Nicotine , Animals , Nicotine/toxicity , Cotinine , Zebrafish , Larva
5.
Molecules ; 28(24)2023 Dec 12.
Article En | MEDLINE | ID: mdl-38138540

In recent years, recurrent droughts have weakened stone pine (Pinus pinea) forests and facilitated the emergence of harmful pests and diseases, including the Leptoglossus occidentalis. The production of stone pine nuts has declined over the past five years. To control this hemipteran pest, a synthetic pyrethroid insecticide called deltamethrin is being tested. However, it is necessary to estimate the residue left by these treatments in forest stands. Therefore, a fast and robust analytical procedure was developed based on QuEChERS clean-up extraction, followed by gas chromatography coupled with an electron capture detector. This optimized method can detect residual concentrations of deltamethrin in pine nuts and pine needles up to 0.1 and 6 µg kg-1, respectively, with a limit of quantification of 0.4 and 20 µg kg-1. Great recoveries (between 84 and 102%) were obtained for both matrices, and no matrix effect was observed. The results showed that two weeks after spraying, the deltamethrin content in the needles of stone pines decreased by up to 75%, and after nine months, its presence was like that of nontreated trees.


Nuts , Pinus , Nuts/chemistry , Spain , Chromatography, Gas , Pinus/chemistry
6.
Chemosphere ; 345: 140468, 2023 Dec.
Article En | MEDLINE | ID: mdl-37852383

Fluoxetine is widely prescribed for the treatment of depressive states, acting at the level of the central nervous system, consequently affecting non-target organisms. This study aimed to investigate the influence of environmentally relevant fluoxetine concentrations (1-1000 ng/L) on Danio rerio development, assessing both embryotoxicity and behavior, antioxidant defense, gene expression and neurotransmitter levels at larval stage. Exposure to fluoxetine during early development was found to be able to accelerate embryo hatching in embryos exposed to 1, 10 and 100 ng/L, reduce larval size in 1000 ng/L, and increase heart rate in 10, 100 and 1000 ng/L exposed larvae. Behavioral impairments (decreased startle response and increased larvae locomotor activity) were associated with effects on monoaminergic systems, detected through the downregulation of key genes (vmat2, mao, tph1a and th2). In addition, altered levels of neurochemicals belonging to the serotonergic and dopaminergic systems (increased levels of tryptophan and norepinephrine) highlighted the sensitivity of early life stages of zebrafish to low concentrations of fluoxetine, inducing effects that may compromise larval survival. The obtained data support the necessity to test low concentrations of SSRIs in environmental risk assessment and the use of biomarkers at different levels of biological organization for a better understanding of modes of action.


Fluoxetine , Water Pollutants, Chemical , Animals , Fluoxetine/pharmacology , Zebrafish/metabolism , Larva , Selective Serotonin Reuptake Inhibitors/toxicity , Behavior, Animal , Water Pollutants, Chemical/metabolism , Embryo, Nonmammalian
7.
Sci Total Environ ; 896: 165240, 2023 Oct 20.
Article En | MEDLINE | ID: mdl-37406704

N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-quinone) is a degradation product of 6PPD, an antioxidant widely used in rubber tires. 6PPD-quinone enters aquatic ecosystems through urban stormwater runoff and has been identified as the chemical behind the urban runoff mortality syndrome in coho salmon. However, the available data suggest that the acute effects of 6PPD-quinone are restricted to a few salmonid species and that the environmental levels of this chemical should be safe for most fish. In this study, larvae of a "tolerant" fish species, Danio rerio, were exposed to three environmental concentrations of 6PPD-quinone for only 24 h, and the effects on exploratory behavior, escape response, nonassociative learning (habituation), neurotransmitter profile, wake/sleep cycle, circadian rhythm, heart rate and oxygen consumption rate were analyzed. Exposure to the two lowest concentrations of 6PPD-quinone resulted in altered exploratory behavior and habituation, an effect consistent with some of the observed changes in the neurotransmitter profile, including increased levels of acetylcholine, norepinephrine, epinephrine and serotonin. Moreover, exposure to the highest concentration tested altered the wake/sleep cycle and the expression of per1a, per3 and cry3a, circadian clock genes involved in the negative feedback loop. Finally, a positive chronotropic effect of 6PPD-quinone was observed in the hearts of the exposed fish. The results of this study emphasize the need for further studies analyzing the effects of 6PPD-quinone in "tolerant" fish species.


Benzoquinones , Central Nervous System , Environmental Exposure , Phenylenediamines , Rubber , Water Pollutants, Chemical , Zebrafish , Animals , Benzoquinones/analysis , Benzoquinones/toxicity , Central Nervous System/drug effects , Central Nervous System/physiology , Ecosystem , Larva/drug effects , Larva/metabolism , Phenylenediamines/analysis , Phenylenediamines/toxicity , Rubber/chemistry , Rubber/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Zebrafish/genetics , Zebrafish/growth & development , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
8.
Environ Toxicol Pharmacol ; 97: 104042, 2023 Jan.
Article En | MEDLINE | ID: mdl-36549414

Currently, endocrine disruptors (EDs) can be found in all the environmental compartments. To understand the effects of estrogenic EDs (EEDs), adults of Cyprinodon variegatus have been classically used as a marine model. However, it is during development that exposure to contaminants may generate permanent consequences. Thus, the aim of this study was to verify the effects produced by acute exposure to 17α-ethinylestradiol (EE2) in C. variegatus larvae. Quantitative PCR (qPCR) results revealed the induction of vtg and zp gene expression on exposure to 1000 ng/L EE2 and the induction of vtgc, zp2, zp3 and cyp19a2, and inhibition of vtgab, wap and cyp1a1 on exposure to 100 ng/L EE2. Lower concentrations inhibited the gene expression of vtgab and wap (50 ng/L), cyp1a1 (25 ng/L) and zp2 (12.5 ng/L). These alterations in gene expression allow us to affirm that larvae of C. variegatus are an efficient and sensitive model for biomonitoring EEDs.


Endocrine Disruptors , Killifishes , Water Pollutants, Chemical , Animals , Endocrine Disruptors/toxicity , Killifishes/metabolism , Cytochrome P-450 CYP1A1/genetics , Biological Monitoring , Estrogens , Ethinyl Estradiol/toxicity , Vitellogenins/metabolism , Water Pollutants, Chemical/toxicity
9.
Front Physiol ; 13: 1040598, 2022.
Article En | MEDLINE | ID: mdl-36467683

The number of people suffering from mental health problems is rising, with anxiety and depression now the most commonly diagnosed psychiatric conditions. Selective serotonin reuptake inhibitors (SSRIs) are one of the most prescribed pharmaceuticals to treat these conditions, which has led to their common detection in many aquatic ecosystems. As the monoaminergic system shows a high degree of structural conservation across diverse animal phyla, a reasonable assumption is that the environmental levels of SSRIs in surface water can lead to adverse effects on fish and other aquatic wildlife. For instance, Sertraline (SER), a widely prescribed SSRI, has been shown to induce adverse effects in fish, albeit most of the reports used exposure concentrations exceeding those occurring in natural environments. Therefore, there is still a great lack of knowledge regarding SERs effects in fish species, especially during early life stages. This study describes the evaluation of developmental exposure of zebrafish (Danio rerio) to environmentally relevant concentrations of SER (from 0.01 to 10 µg/L), using a battery of key survival behaviors and further relating them with the expression of genes and neurochemical profiles of the monoaminergic system. We found that developmental exposure to SER did not affect embryo morphogenesis and growth. However, concentrations as low as 0.1 µg/L induced hypolocomotion and delayed learning. The observed behavioral impairment was associated with augmented serotonin levels rather than other neurochemicals and molecular markers, highlighting the relationship between serotonin signaling and behavior in zebrafish.

10.
Sci Rep ; 12(1): 17650, 2022 10 21.
Article En | MEDLINE | ID: mdl-36271101

Cannabidiol (CBD) is a substance derived from Cannabis sativa, widely studied in medicine for controlling neural diseases in humans. Besides the positive effects on humans, it also presents anxiolytic proprieties and decreases aggressiveness and stress in mammals. Therefore, CBD has the potential to increase welfare in reared animals, as it seems to reduce negative states commonly experienced in artificial environments. Here, we tested the effect of different CBD doses (0, 1, 10 and 20 mg/kg) on aggressiveness, stress and reproductive development of the Nile tilapia (Oreochromis niloticus) a fish reared worldwide for farming and research purposes. CBD mixed with fish food was offered to isolated fish for 5 weeks. The 10 mg/kg dose decreased fish's aggressiveness over time, whereas 20 mg/kg attenuated non-social stress. Both doses decreased the baseline cortisol level of fish and increased the gonadosomatic index. However, CBD 1 and 10 mg/kg doses decreased the spermatozoa number. No CBD dose affected feeding ingestion and growth variables, showing that it is not harmful to meat production amount. Despite the effect on spermatozoa, CBD supplementation exhibits high potential to benefit animals' lives in artificial environments. Therefore, we showed for the first time that CBD could be used as a tool to increase non-mammal welfare, presenting a great potential to be explored in other husbandry and captivity species.


Anti-Anxiety Agents , Cannabidiol , Cannabis , Cichlids , Humans , Male , Animals , Cannabidiol/pharmacology , Hydrocortisone , Mammals
11.
J Pharm Biomed Anal ; 217: 114844, 2022 Aug 05.
Article En | MEDLINE | ID: mdl-35636010

Monoamine neurochemicals regulate most of the physiological and behavioural processes in the vertebrate brain. Mice and rats are the preferred species in scientific research, specifically in biomedical research, due to their anatomical, genetic and physiological similarity to human. Moreover, the interest in monitoring the changes in the central nervous system (CNS) produced by neuroactive compounds is constantly growing. In this study, we have evaluated the performance of liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) for the multiresidue determination of multi-class monoamine neurotransmitters in the main areas of mouse brain (prefrontal cortex and striatum). The best performance was obtained with a BEH amide column, which permitted the separation of 9 compounds in only 10 min. Moreover, the performance of LC-MS/MS was evaluated in terms of linearity, sensitivity, intraday precision and overall robustness. Finally, catecholamine neurochemicals reported significant differences in the concentration levels between prefrontal cortex and striatum, while serotonergic neurochemicals didn't report any significant differences.


Neurotransmitter Agents , Tandem Mass Spectrometry , Animals , Brain , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Corpus Striatum/chemistry , Mice , Neurotransmitter Agents/analysis , Rats , Reproducibility of Results , Tandem Mass Spectrometry/methods
12.
Article En | MEDLINE | ID: mdl-35500841

N-ethyl-pentedrone (NEPD, 2-(ethylamino)-1-phenyl-1-pentanone) is one of the latest synthetic cathinone derivatives that emerged into the illicit drug market. This drug has psychostimulant properties and has been related with several intoxications and even fatalities. However, information about the consequences of its acute and repeated consumption is lacking. Thus, the aim of our study was to investigate the behavioral effects after both acute and repeated NEPD exposure as well as the neurochemical changes. Male OF1 mice were treated with an acute dose (1, 3 or 10 mg/kg, i.p.) or received repeated injections of these doses (twice/day, 5 days) of NEPD. Shortly after drug-exposure or during drug-withdrawal, anxiety-like behavior, aggressiveness, social interaction, depressive-like symptoms, body weight and temperature were assessed. Also, monoamine synthesis enzymes, levels of neurotransmitters and their precursors and main metabolites, as well as ΔFosB, were determined in striatum and prefrontal cortex from post-mortem tissue. Acute administration of NEPD induced anxiolytic effects and reduced social exploration whereas during withdrawal after repeated administration the anxiolytic effect had vanished, and the reduced social exploration was still present and accompanied with increased aggressive behavior. Moreover, NEPD (10 mg/kg) induced slight hyperthermia and reduced weight gain during the repeated administration, whereas increased locomotor activity and lack of depressive symptoms were found during withdrawal. This was accompanied by increased plasma corticosterone and decrease in striatal dopamine. Finally, the long-lasting and robust increase in ΔFosB levels found in striatum after NEPD chronic exposure suggests a high risk of dependence. The increased aggressivity and locomotor activity, together with this potential of inducing dependence justify a warning about the risks of consumption of NEPD if translated to humans.


Central Nervous System Stimulants , Pentanones , Aggression , Animals , Male , Methylamines , Mice
13.
Front Behav Neurosci ; 16: 810051, 2022.
Article En | MEDLINE | ID: mdl-35283741

Individuals differ in their preference for alcohol and propensity to develop alcoholism, where the behavioral profile, such as the bold-shy axis, plays an important role for such a difference. However, literature is limited and conflicting on the causes and consequences of this relationship. Translational studies using animal models, such as zebrafish, can help identify behavioral traits that predispose individuals to drink alcohol compulsively. Here, the preference for alcohol was investigated in two distinct traits in zebrafish: shy and bold. For this purpose, fish were separated into shy and bold traits and then a conditioned place preference paradigm was used, a strategy that allows the rewarding effects from alcohol to be assessed by the ability to enhance the animal's preference for an environment that initially was not preferred. It was found that bold zebrafish actively searched for the environment that was paired to alcohol after one acute exposure, whereas, shy fish changed their place preference even without alcohol administration, showing that the conditioned place preference protocol, given the short amount time to assess place preference, is not ample enough for shy fish to choose. Our results show that behavioral profiles must be considered in further studies since differences between shy and bold individuals on preference behavior can strongly interfere in the assessment of drug preference, mainly when using the conditioned place preference paradigm.

14.
Sci Total Environ ; 830: 154684, 2022 Jul 15.
Article En | MEDLINE | ID: mdl-35314222

Animal behavioural responses are increasingly being used in environmental risk assessment. Nevertheless, behavioural responses are still hampered by a lack of standardisation. Phototactic behaviour in zooplankton and in particular in Daphnia has often been associated to vertical migration but there is also 'shore-avoidance' horizontal behaviour: Daphnia uses shades along the shore to swim either to or away from the shore and predators. Previously, we develop a vertical oriented behavioural hardware able to reproduce phototactic fish induced depth selection in Daphnia magna, its modulation by fish kairomones and psychotropic drugs and the neurotransmitter profiles associated to those responses. This study aims to test if it is possible to use an horizontal 24 multi-well plate maze set up to assess phototactic fish induced responses in D. magna. The study was conducted using two clones with opposed phototaxis upon exposure to fish kairomones and using psychotropic drugs known to modulate phototaxis. Acrylic strips opaque to visible light but not to the infrared one were used to cover half of the arena of each of the wells of the multi-well plate. Clone P132,85 showed positive phototaxis in either the vertical and horizontal set up and negative phototaxis when exposed to fish kairomones or to the muscarinic acetylcholine receptor antagonist's scopolamine and atropine. The opposite behaviour was observed for clone F. Diazepam and pilocarpine ameliorate fish kairomone induced negative phototaxis and picrotoxin increased it only in clone P132,85 in the vertical set up. The determination of neurotransmitters showed much greater concentrations of dopamine and of glycine in clone F, which may be relate to its negative phototaxis and its observed lower responsiveness to fish kairomones. The results from this study suggest a simple, fast, and high throughput phototactic behaviour assay for D. magna that can be easily adapted to other species.


Daphnia , Phototaxis , Animals , Clone Cells , Fishes , Neurotransmitter Agents/pharmacology , Pheromones/pharmacology , Psychotropic Drugs/toxicity
15.
J Hazard Mater ; 431: 128563, 2022 06 05.
Article En | MEDLINE | ID: mdl-35248961

The insecticide carbaryl is commonly found in indirectly exposed freshwater ecosystems at low concentrations considered safe for fish communities. In this study, we showed that after only 24 h of exposure to environmental concentrations of carbaryl (0.066-660 ng/L), zebrafish larvae exhibit impairments in essential behaviours. Interestingly, the observed behavioural effects induced by carbaryl were acetylcholinesterase-independent. To elucidate the molecular initiating event that resulted in the observed behavioural effects, in silico predictions were followed by in vitro validation. We identified two target proteins that potentially interacted with carbaryl, the α2B adrenoceptor (ADRA2B) and the serotonin 2B receptor (HTR2B). Using a pharmacological approach, we then tested the hypothesis that carbaryl had antagonistic interactions with both receptors. Similar to yohimbine and SB204741, which are prototypic antagonists of ADRA2B and HTR2B, respectively, carbaryl increased the heart rate of zebrafish larvae. When we compared the behavioural effects of a 24-h exposure to these pharmacological antagonists with those of carbaryl, a high degree of similarity was found. These results strongly suggest that antagonism of both ADRA2B and HTR2B is the molecular initiating event that leads to adverse outcomes in zebrafish larvae that have undergone 24 h of exposure to environmentally relevant levels of carbaryl.


Carbaryl , Zebrafish , Acetylcholinesterase , Animals , Carbaryl/toxicity , Ecosystem , Larva
16.
J Neurochem ; 160(2): 218-233, 2022 01.
Article En | MEDLINE | ID: mdl-34816436

N-ethyl-pentylone (NEP), also known as 'ephylone' and N-ethylnorpentylone, has been identified as one of the most recent novel psychostimulants to emerge into the illicit drug market and it has been associated with some intoxications and even fatalities. However, little is known about the consequences of its repeated consumption as well as the role of the monoaminergic system in such consequences. Thus, the aim of our study was to investigate the neurochemical profile and the behavioural effects after both acute and repeated NEP exposure. Male OF1 mice were acutely (1, 3, 10 mg/kg, i.p.) or repeatedly (1, 3, 10 mg/kg, i.p., 5 days, twice/day) exposed to NEP, and anxiety-like behaviour, aggressiveness, social interaction, depressive-like symptoms, body temperature, changes in monoaminergic enzymes and neurotransmitters levels as well as ΔFosB in striatum and prefrontal cortex (PFC) from post-mortem tissue were analysed short after drug-exposure or during drug-withdrawal. Acute administration of NEP induced anxiolytic effects but also an aggressive behaviour and social exploration deficits in mice, which persist during NEP-withdrawal. Moreover, NEP induced hyperthermia as well as depressive-like symptoms after repeated administrations that may be related to the decrease in serotonin and noradrenaline levels observed in striatum and PFC. Finally, the long-term increase in ΔFosB levels in striatum after NEP chronic exposure points to a high risk of dependence. Altogether indicates that NEP consumption induces different neurological and neuropsychiatric disorders accompanied by changes in the monoaminergic system, posing a threat to public health.


Behavior, Animal/drug effects , Benzodioxoles/toxicity , Butylamines/toxicity , Central Nervous System Stimulants/toxicity , Animals , Male , Mice
17.
Sci Total Environ ; 813: 152345, 2022 Mar 20.
Article En | MEDLINE | ID: mdl-34942250

Despite the significant increase in the generation of SARS-CoV-2 contaminated domestic and hospital wastewater, little is known about the ecotoxicological effects of the virus or its structural components in freshwater vertebrates. In this context, this study evaluated the deleterious effects caused by SARS-CoV-2 Spike protein on the health of Danio rerio, zebrafish. We demonstrated, for the first time, that zebrafish injected with fragment 16 to 165 (rSpike), which corresponds to the N-terminal portion of the protein, presented mortalities and adverse effects on liver, kidney, ovary and brain tissues. The conserved genetic homology between zebrafish and humans might be one of the reasons for the intense toxic effects followed inflammatory reaction from the immune system of zebrafish to rSpike which provoked damage to organs in a similar pattern as happen in severe cases of COVID-19 in humans, and, resulted in 78,6% of survival rate in female adults during the first seven days. The application of spike protein in zebrafish was highly toxic that is suitable for future studies to gather valuable information about ecotoxicological impacts, as well as vaccine responses and therapeutic approaches in human medicine. Therefore, besides representing an important tool to assess the harmful effects of SARS-CoV-2 in the aquatic environment, we present the zebrafish as an animal model for translational COVID-19 research.


COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Female , Humans , SARS-CoV-2 , Zebrafish
18.
Front Pharmacol ; 12: 770319, 2021.
Article En | MEDLINE | ID: mdl-34880760

Hyperthermia is a common confounding factor for assessing the neurotoxic effects of methamphetamine (METH) in mammalian models. The development of new models of methamphetamine neurotoxicity using vertebrate poikilothermic animals should allow to overcome this problem. The aim of the present study was to develop a zebrafish model of neurotoxicity by binge-like methamphetamine exposure. After an initial testing at 20 and 40 mg/L for 48 h, the later METH concentration was selected for developing the model and the effects on the brain monoaminergic profile, locomotor, anxiety-like and social behaviors as well as on the expression of key genes of the catecholaminergic system were determined. A concentration- and time-dependent decrease in the brain levels of dopamine (DA), norepinephrine (NE) and serotonin (5-HT) was found in METH-exposed fish. A significant hyperactivity was found during the first hour of exposure, followed 3 h after by a positive geotaxis and negative scototaxis in the novel tank and in the light/dark paradigm, respectively. Moreover, the behavioral phenotype in the treated fish was consistent with social isolation. At transcriptional level, th1 and slc18a2 (vmat2) exhibited a significant increase after 3 h of exposure, whereas the expression of gfap, a marker of astroglial response to neuronal injury, was strongly increased after 48 h exposure. However, no evidences of oxidative stress were found in the brain of the treated fish. Altogether, this study demonstrates the suitability of the adult zebrafish as a model of METH-induced neurotoxicity and provides more information about the biochemical and behavioral consequences of METH abuse.

19.
Toxics ; 9(8)2021 Aug 09.
Article En | MEDLINE | ID: mdl-34437505

This study assessed the effects of the monoamine oxidase (MAO) inhibitor deprenyl in Daphnia magna locomotor activity. The mechanisms of action of deprenyl were also determined by studying the relationship between behaviour, MAO activity and neurotransmitter levels. Modulation of the D. magna monoamine system was accomplished by 24 h exposure to two model psychotropic pharmaceuticals with antagonistic and agonistic serotonin signalling properties: 10 mg/L of 4-chloro-DL-phenylalanine (PCPA) and 1 mg/L of deprenyl, respectively. Contrasting behavioural outcomes were observed for deprenyl and PCPA reflected in decreased basal locomotor activity and enhanced habituation for the former compound and delayed habituation for the latter one. Deprenyl exposure inhibited monoamine oxidase (MAO) activity and increased the concentrations of serotonin, dopamine and the dopamine metabolite 3-methoxytyramine in whole D. magna extracts. Our findings indicate that D. magna is a sensitive and useful nonvertebrate model for assessing the effects of short-term exposure to chemicals that alter monoamine signalling changes.

20.
Sci Total Environ ; 798: 149252, 2021 Dec 01.
Article En | MEDLINE | ID: mdl-34340064

Pharmaceuticals and other emerging contaminants are continuously released into the aquatic environment, considered as 'pseudo-persistent' pollutants. Many compounds degrade fast in the environment, but sometimes their transformation products (TPs) are equally or even more toxic than the parental compounds, raising concern about the potential risks to the environment. In this way, the crustacean Daphnia magna (D. magna) is one of the most widely used organisms in aquatic toxicology studies, since it is an interesting non-vertebrate model to study via neurotransmitters the toxicological consequences of contaminants. In this study, the stability in water of 17 neuroactive compounds using ultra-high-performance liquid chromatography (UHPLC) coupled to a MS/MS detector was evaluated. In order to assess the stability of the compounds, samples of 1 ng µL-1 were analyzed at different times (0, 24 and 48 h). No degradation was observed for most of the studied compounds, except for apomorphine and 6-hydroxydopamine that were degraded completely in the first 24 h. The behavioral assay was based in the automatized delivery of visible light stimuli. Most of the tested compounds altered motile responses to light significantly. The pharmaceuticals memantine, imidacloprid, fluoxetine, deprenyl, diazepam, apomorphine and 6-hydroxydopamine decreased motile responses to light. Conversely, pilocarpine, scopolamine, nicotine and p-chlorophenylalanine increased motile responses. Despite the observed degradation of apomorphine and 6-hydroxydopamine, their degradation products (APO-TP1 and 6OH-TP1) were stable and so their effects on behavior. This study shows that a degradation or transformation of the main pollutant is not always linked to a decrease in its toxicity.


Daphnia , Water Pollutants, Chemical , Animals , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry , Water , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
...